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Abstract Lattice knot statistics, or the study of knotted polygons in the cubic
lattice, gained momentum in 1988 when the Frisch-Wasserman-Delbruck conjecture
was proven by Sumners and Whittington (J Phys A Math Gen 21:L857–861, 1988),
and independently in 1989 by Pippenger (Disc Appl Math 25:273–278, 1989). In this
paper, aspects of lattice knot statistics are reviewed. The basic ideas underlying the
study of knotted lattice polygons are presented, and the many open problem are posed
explicitly. In addition, the properties of knotted polygons in a confining slab geometry
are explained, as well as the Monte Carlo simulation of knotted polygons in Z

3 and
in a slab geometry. Finally, the mean behaviour of lattice knots in a slab are discussed
as a function of the knot type.

Keywords Lattice knots · Ring polymer · Connective constant · Statistical topology

1 Introduction

Lattice knot statistics was boosted to prominence in the late 1980’s when the Frisch-
Wasserman-Delbruck conjecture [6, 7] was settled in the cubic lattice almost thirty
years after it was made, by Sumners and Whittington [36] and by Pippenger [32].
This conjecture, made in the context of knotting in ring polymers, implies that the
probability that a polymer in a good solvent is knotted approaches one as the length
of the polymer is increased.

This result inspired activity in the field, with the extension of the Frisch-Wasser-
man-Delbruck conjecture to interacting polygons (for an example, see Ref. [15]), the
study of the statistical geometric properties of lattice knots in the form of writhing and
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Fig. 1 A bond-stick polygon
model of a polymer in three
space. This particular example is
a non-trivial knotted polygon
which cannot be continuously
deformed into the unknot
without passing through
conformations with singular
points (or self-intersections)

twisting [14, 30, 37], and the development of algorithms for the Monte Carlo sampling
of lattice knots and the numerical study of knotting and of knot statistics in the cubic
lattice [11, 16, 17].

The normal mathematical model for a ring polymer is a polygon as illustrated in
Fig. 1. The simplest version of these models are uniformly weighted polygons in three
space, and the free energy in such a model depends only on entropic contributions
arising from the conformational degrees of freedom. Such models are considered to
model ring polymers in a good solvent [5].

A particularly interesting and rich polygon model of a ring polymer is a lattice
polygon, consisting of the placement of a polygon in a lattice, usually the two dimen-
sional square lattice, or the three dimensional cubic lattice. This model is amenable
to both numerical treatment in the form of Monte Carlo simulations, and to rigorous
treatment. A large and active field of study have grown around lattice polygons, includ-
ing the development of algorithms for Monte Carlo simulations, the development of
scaling arguments for understanding scaling and critical behaviour in these models,
and also the application of rigorous mathematical arguments to prove the existence of
scaling limits and critical points, and to study the role of conformational degrees of
freedom in the free energy. The Frisch-Wasserman-Delbruck conjecture was settled
in the mathematical context for cubic lattice polygons [32, 36].

The polygon model of a ring polymer in three space illustrated in Fig. 1 is self-
avoiding. Since the polygon is itself composed of thin one dimensional edges, this
self-avoidance has little effect on its entropic properties. In this context a lattice model
with excluded volume (self-avoidance) is a more realistic model of a ring polymer:
each vertex in a lattice polygon excludes a cubical volume of unit side length centered
at the vertex, and this has a dramatic effect on the mathematical properties of the
model.

The self-avoiding walk is the archetypical polymer model with excluded volume
[9]. The non-Markovian nature of this model gives a rich mathematical structure, and
the subject of intensive research from a variety of different points of view [25]. A
(self-avoiding) polygon in the cubic lattice is composed of unit length edges and a
self-avoiding, see Fig. 2 for an example in the square lattice.

In three dimensions a lattice polygon is a model of a three dimensional ring poly-
mer. Such lattice polygons are often called lattice knots. These are special cases of
lattice polygons, and the topological properties of the polygons are of critical concern
in these models.

In a lattice polygon model of a ring polymer, two polygons are considered to be
equivalent if one can be translated upon the other. Define pn to be the number of
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Fig. 2 A square lattice polygon model of a ring polymer in a good solvent. The excluded volume effect in
lattice polygons has an important effect on the statistical properties of the model

equivalence classes of polygons, counted up to translational equivalence. This quan-
tity is the most fundamental in a lattice polygon model.

It is relatively easy to check that in the square lattice, p4 = 1, p6 = 2 and p8 = 7,
but pn increases exponentially with n, and it soon becomes a tremendous challenge
to enumerate it for increasing values of n. Currently, pn is known for (even) n ≤ 110
[19] in the square lattice, and the series in higher dimensions are much shorter. The
(intensive) free energy in this model is composed purely of entropic terms and is
defined by (log pn)/n.

The growth constant µ is defined by

µ = lim
n→∞ p1/n

n (1)

and gives the (exponential) rate at which pn is growing. The existence of this limit is
known (see Sect. 2).

A “grand canonical” version of this model is obtained if a monomer activity t asso-
ciated with the number of monomers is introduced. This gives rise to a generating
function description of polygons in the lattice, where the radius of convergence tc of
the generating function

g(t) =
∑

n>0

pntn (2)

can be analysed to gain information on the limiting value of the free energy as n → ∞:
it follows that t−1

c = limn→∞[(log pn)/n] = log µ. This ensemble is somewhat
unphysical in the sense that it models a ring polymer sampled from a distribution of
different lengths at a “monomer activity” t , and with expected values (mean length,
knotting properties, size, etc.) over the entire (Boltzman) ensemble. In spite of this, it
is still possible to gain useful information on the statistical properties of polygons by
analysing polygons in this ensemble.
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In this paper a review of the basic properties of polygons and of lattice knots in the
cubic lattice is given. This review is not meant to be comprehensive, but will instead
focus on some fairly narrow issues concerned with the statistical properties of lattice
knots, with the simulation of lattice knots, and with the properties of lattice knots in
a slab (this is a model of a knotted ring polymer in a confining geometry).

In general the presence of a knot in a polygon has an effect on its conformational
entropy, and therefore on other properties of the polygon, such as its size. In Sect. 2 I
review the most basic results in the study of lattice knots. The properties of the gen-
erating function of polygons, and of lattice knots, are briefly presented and reviewed.
There are numerous open problems, and some of these are posed explicitly.

In Sect. 3 attention is given to lattice polygons in a slab. This is a model of a ring
polymer in a confined geometry. If pn(w) is the number of polygons of length n in
a slab of width w, then the limit limn→∞ (pn(w))1/n = µw [35] gives the growth
constant of pn(w). It is known that µw → µ as w → ∞ [15], and the rate at which
µw → µ can be obtained by using a scaling argument.

Next, attention is turned to knotted polygons in a slab of width w. If pn(K ;w) is
the number of lattice polygons of knot type K , in a slab of width w and of length n,
then the generating function is

gK ,w(t) =
∑

n>0

pn(K , w)tn . (3)

In this ensemble a scaling argument can be used to predict the expected length of
polygons. This is given by

〈n〉K ,w = d log gK ,w(t)

d log t
=

∑
n>0 n pn(K , w)tn

∑
n>0 pn(K , w)tn

. (4)

At the critical point t = 1/µ∅ of the generating function of unknotted polygons 〈n〉K ,w

is shown to approach a constant as w → ∞ if K is the unknot, while 〈n〉K ,w diverges
with increasing w if K is a non-trivial knot. A scaling argument also indicates that
if K is a prime knot, then 〈n〉K ,w diverges along a concave curve, while if K is a
compound knot, then 〈n〉K ,w diverges along a convex curve [13].

In Sect. 4 the BFACF algorithm for sampling lattice knots along a Markov Chain
is reviewed. This algorithm is known to have ergodicity classes in Z

3 which coin-
cides with the knot types of the lattice polygons [17]. In a slab of width w > 1 this
algorithm is also known to have ergodicity classes coinciding with lattice knot types
[13]. In Sect. 5 I review data obtained by sampling lattice knots in Z

3 and in slabs of
widths w ∈ [0, 20]. In particular, the algorithm was used to collect data on 〈n〉K ,w

for a set of knots and to examine the predictions of scaling arguments. Results on the
growth constant, the entropic exponents, the metric exponent, and the mean length,
and amplitude ratios of lattice knots confined to a slab are also reviewed in Sect. 5.

In Sect. 6 a few short final conclusions are made.
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2 Lattice polygons, and knotted lattice polygons

2.1 Lattice polygons: a short review

Consider the hypercubic lattice Z
d and let the coordinates of a vertex x ∈ Z

d be
denoted by (X (x), Y (x), . . . , Z(x)), with X (x) denoting the first coordinate, and
Z(x) always denoting the last coordinate.

We define the bottom vertex of a polygon to be its lexicographic least vertex, and
its top vertex to be its lexicographic most vertex. Incident with the bottom vertex of a
polygon are two edges, one of which has lexicographic least midpoint, and which is
normal to the X -direction. This is the bottom edge of the polygon. Similarly, incident
with the top vertex of a polygon are two edges, one of which has lexicographic most
midpoint and which is normal to the X -direction. This is the top edge of the polygon.

Two polygons in Z
d can be concatenated by translating and rotating the second

polygon until its bottom edge is parallel to the top edge of the first polygon (see Fig. 3)
and with first coordinate bigger by one. By deleting these top and bottom edges, and
inserting two edges to reconnect the two polygons into a single polygon, the polygons
are concatenated. If the first and second polygons had lengths n and m, then there were
pn choices for the first polygon, and pm/(d − 1) choices for the second, and the num-
ber of distinct polygons of lengths n + m which can be obtained in this construction
is at most pn+m . Thus,

pn pm/(d − 1) ≤ pn+m . (5)

By applying Fekete’s lemma to this supermultiplicative inequality [8], the result is
that the limit

lim
n→∞ p1/n

n = µ (6)

exists. The growth constant µ determines the exponential rate at which pn increases
with n. In particular, since pn ≤ (2d)n , µ is finite, and existence of the above limit
implies that pn = µn+o(n) and pn ≤ (d − 1)µn . Observe as well that pn ≥ 2n/2 so
that µ ≥ √

2.
In the three dimensional (cubic) lattice the growth constant µ has been estimated

from self-avoiding walk enumeration using lace expansions [10] in Ref. [4]. The best

Fig. 3 Concatenating two polygons in the hypercubic lattice. Bottom vertices are donoted by ◦’s, and top
vertices are denoted by •’s
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estimate is

µ = 4.684043 ± 0.000012. (7)

This follows since polygons and self-avoiding walks can be shown to have the same
growth constant [8].

The pattern theorem for lattice polygons may be stated as follows: A pattern is
any finite length self-avoiding walk. A pattern P is said to occur in a polygon if P is
identical, up to translation, with a sub-walk in the polygon. A pattern P is proper if
it can occur three times in a self-avoiding walk. Let pn(≤�εn� P) be the number of
lattice polygons of length n, with at most �εn� occurrences of the proper pattern P .
The pattern theorem states that for any proper pattern P there is an ε > 0 such that

lim sup
n→∞

(pn(≤�εn� P))1/n < µ. (8)

In other words, the set of polygons which contains at least �εn� occurrences of P ,
with cardinality pn − pn(≤�εn� P), grows at the same exponential rate as pn itself.
This result for polygons is based on a pattern theorem for self-avoiding walks [20, 21]
(see [12] for a proof for polygons using a method due to D J A Welsh). The pattern
theorem for polygons was used to prove the Frisch-Wasserman-Delbruck conjecture
[32, 36].

These are the most important rigorous results in low dimensions for lattice poly-
gons—most other results are in one way or another based on these. A theoretical (but
not rigorous) interpretation of polygons as arising in the N → 0 limit of a O(N )

model [28] suggests the asymptotic form

pn = A nα−3µn
(

1 + B n−� + C n−1 + · · ·
)

(9)

for pn , with a powerlaw correction to the pure exponential growth term where α is
often called the entropic or specific heat exponent. Corrections to this are both analytic
(as in the terms C n−1) and non-analytic (as in the terms B n−�), where the conflu-
ent correction exponent � is the first in a hierarchy of higher order corrections. For
the (numerical) purposes here, the corrections will be ignored, and the assumption
that pn ≈ A nα−3µn could be made. It is known that α − 3 < −1 in three dimen-
sions [23, 24]. Thus, the generating function defined in Eq. 2 is finite at its radius
of convergence, which is given by tc = 1/µ by Eq. 6. Simulations have shown that
α = 0.237 ± 0.005 and � = 0.56 ± 0.03 [22].

The generating function of lattice polygons with an activity t conjugate to the
number of vertices is defined by Eq. 2. Observe that the singular behaviour of g(t)
suggested by Eq. 9 is given by

g(t) ∼ |log(µt)|2−α , (10)
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and this is only be singular part in g(t). The critical point in g(t) is at t = 1/µ, and
since α − 3 < −1 [24], g(1/µ) is finite. Hence,

g(t) ≈ g(1/µ)
(

1 − C |log(µt)|2−α
)

(11)

as t → 1/µ from below.
The average length of polygons in this (grand canonical) ensemble (with g(t) play-

ing the role of a grand partition function) is given by

〈n〉 = d

d log t
log g(t) ≈ Const. + C(2 − α)| log(tµ)|1−α

1 − C | log(tµ)|2−α
. (12)

Since pn = µn+o(n), the radius of convergence of g(t) is given by t = 1/µ, and by
putting t = 1/µ in the above, one obtains the result that

〈n〉|t=1/µ = Const. (13)

In other words, the expected length of polygons at the critical value of t=1/µ is finite.

2.2 Knotted lattice polygons

A polygon is a piecewise linear embedding of a circle into Z
3 and thus into three space,

see Fig. 4. The knot type K of a given polygon is therefore well defined. Define pn(K )

to be the number of lattice polygons of length n and of knot type K , counted up to
equivalence under translations in the cubic lattice. Concatenation of two polygons of
knot types K and L can still be done as illustrated in Fig. 3, and the result is a polygon
with compound knot type K #L . In particular, this implies that

pn(K ) pm(L) ≤ pn+m(K #L). (14)

Fig. 4 A knotted lattice polygon
with 24 steps in the cubic lattice
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If K = L = ∅, where ∅ denote the unknot, then this shows that

pn(∅) pm(∅) ≤ pn+m(∅) (15)

with the result that the limit

lim
n→∞[pn(∅)]1/n = µ∅ (16)

exists, where µ∅ is the growth constant of unknotted lattice polygons.
The Frisch-Wasserman-Delbruck conjecture implied that µ∅ < µ. Numerical sim-

ulations [16, 38] indicate that

log µ − log µ∅ = (4.15 ± 0.32) × 10−6. (17)

In other words, µ = 4.6841 . . . and µ∅ = 4.6841 . . ., and there is a difference in the
next one or two digits. Current computational technology could determine the next
couple of digits in µ and µ∅ (while µ is known at least to the accuracy in Eq. 7), but
this remains a tremendous computational challenge. The next digits in these growth
constants is stated as an open problem:

Open problem 2.1 Determine, by Monte Carlo simulation, series enumeration or
otherwise, the next digits in µ and in µ∅, by improving the estimates in Eqs. 7 and 17.

The existence of µ∅ as a limit in Eq. 16 is a special case. For non-trivial knot types,
it is not known that a similar limit exists. Instead one defines the limsup

µK = lim sup
n→∞

[pn(K )]1/n . (18)

The existence of µK as a limit is a major open problem in the study of lattice knots.

Open problem 2.2 Prove that the limit

µK = lim
n→∞[pn(K )]1/n

exists for arbitrary and fixed non-trivial knot types K .

It is known that [34]

µ∅ ≤ µK < µ. (19)

Settling the first inequality is yet another open problem. Generally, it is accepted that
this should be an equality.

Open problem 2.3 Prove that µ∅ = µK for arbitrary and fixed non-trivial knot
types K .
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A pattern theorem is not known for polygons of fixed knot types. In particular,
it seems that one should be able to prove such a theorem for the case of unknotted
polygons. This is yet another open problem.

Open problem 2.4 Prove a pattern theorem for unknotted polygons in the cubic lat-
tice.

More generally, one could hope for a more general theorem:

Open problem 2.5 Prove a pattern theorem for lattice polygons of fixed knot type K
in the cubic lattice.

Apart from settling the Frisch-Wasserman-Delbruck conjecture, little progress has
been made understanding the statistical properties of knotted lattice polygons. Gen-
erally, this is a field that is known more for its basic open problems, rather than for its
theorems.

In analogy with pn , it is generally expected that the asymptotic form for pn(K )

should be

pn(K ) = AK nαK −3µn
K (1 + BK n−�K + CK n−1 + · · · ). (20)

There is tremendous numerical support for this assumption. Numerical simulations in
Ref. [31] suggest that µK = µ∅ and also the rather surprising fact that AK is indepen-
dent of K (if the assumption that µ∅ = µK is made). The entropic exponent of lattice
knots, αK , appears to be related to the entropic exponent α∅ of unknotted polygons by

αK = α∅ + NK (21)

where NK is the number of prime components in the knot type K . For example,
α31 = α∅ + 1, while α31#31 = α∅ + 2. However, unlike pn , the asymptotic formula
for pn(K ) in Eq. 20 does not rest on a theoretical foundation such as an O(N ) model.
Settling this is unlikely to be a rigorous result, but this remains an open problem.

Open problem 2.6 If K is a fixed knot type, show that the asymptotic formula

pn(K ) = AK nαK −3µn
K (1 + BK n−�K + CK n−1 + · · · )

can be obtained from a (non-rigorous) field theoretic argument. Show this in particular
for K = ∅. In addition, provide theoretical support for the relation

αK = α∅ + NK

amongst the entropic exponents of lattice knots of fixed knot type.

These open problems have been tested numerically, see for example Refs. [29, 31].
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3 Polygons in confined spaces: slabs in the cubic lattice

A slab of width w, denoted by Lw, is the space

Lw = {x ∈ ZZd | 0 ≤ Z(x) ≤ w}. (22)

A polygon ω is confined to Lw if each vertex in ω is contained in Lw. The plane Z = 0
is the bottom bounding plane of Lw, and Z = w is the top bounding plane of Lw.

A polygon in a slab is a model of a ring polymer in a confined space, see Fig. 5. In
the grand canonical version of this model, there is an activity t associated with each
monomer or vertex, and the polygon maintains a mean length which depends on the
width w of the slab.

In the square or cubic lattice the model becomes a lattice polygon confined to a
slab Lw (see Fig. 6). Define pn(w) to be the number of polygons of length n in a slab
Lw of width w, counted up to equivalence under translations parallel to the bounding
planes of the slab. The Z-span or span of a polygon ω in Lw is defined by

Sz(ω) = max
x,y∈ω

|Z(x) − Z(y)| . (23)

Two polygons in a slab Lw can be concatenated as illustrated in Fig. 7. A narrow
polygon τ of span w is placed in Lw between the two polygons, which are then each
concatenated to τ . Details of the construction depends on the number of dimensions,

Fig. 5 A polygon in a slab Lw is a model of a ring polymer in a confined space. Narrowing the slab reduces
the conformational entropy of the polygon, resulting in a (repulsive) entropic force being exerted on the
walls of the slab. In this example, the polygon is a knot

Fig. 6 A lattice polygon model of a ring polymer in a slab geometry
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Fig. 7 Concatenating two polygons, the first of length n and the second of length m, in a slab Lw . A
polygon of Z -span w and length 2w + 1 is inserted in the slab, and the first polygon is translated to its
left-side, while the second is translated to its right side. The construction is performed by removing and
adding edges to join these polygons up into a single polygon of length n + m + 2w + 1

and is easier in two dimensions, see Refs. [35, 39], and Ref. [40] for related results.
The result is the supermultiplicative inequality

pn(w)pm(w) ≤ pn+m+k(w) (24)

where k is a constant (and k = 2(w + 1) in two dimensions). Since pn(w) ≤ pn , the
result is the existence of a growth constant in this model:

lim
n→∞ p1/n

n (w) = µw. (25)

The free energy F(w) in this model is defined in the usual way by

Fn(w) = 1

n
log pn(w) (26)

and it is known that Fn(w) → log µw as n → ∞ [15], and the limiting free energy is
defined by

F(w) = log µw. (27)

It is generally believed, in analogy with Eq. 9, that pn(w) has asymptotic behaviour
given by

pn(w) = Awnαw−3µn
w

(
1 + Bwn−�w + Cwn−1 + · · ·

)
. (28)

It is known that µw → µ as w → ∞:

Theorem 3.1 It is the case that µw < µw+1 < µ for finite w, and

lim
w→∞ µw = µ.
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Fig. 8 A schematic diagram of a lattice polygon in a slab of width w. There are two length scales in this
model, namely the width w of the slab, and the size R of the polygon. The (intensive) free energy is a
function of the ratio R/w

For a proof of this theorem, see Ref. [15].
The relationship between µw and µ can be further examined by using a scaling

argument. In Fig. 8 a schematic diagram of a polygon in a slab of width w is given.
There are two length scales in this model, namely the width w of the slab, and the
size R of the polygon. The size of the polygon in the lattice scales with its length n as
R ∼ nν where ν is the metric exponent.

The free energy in this model is an intensive quantity, and it is a function of the
ratio of the length scales:

Fw = n−1 F(R/w) = w−1/ν F1(n
ν/w). (29)

Since Fw = log µw, this together with Theorem 3.1 implies that for constant nν/w,

µw ∼ µ e−C w−1/ν ≈ µ(1 − C w−1/ν) (30)

for some unknown constant C .
The generating function in this model is given by

gw(t) =
∑

n>0

pn(w)tn (31)

at activity t . Using the asymptotic form for pn(w) in Eq. 28 then suggest that the
singular part of gw(t) have approximate behaviour given by

gw(t) ∼ |log(µwt)|2−αw (32)

and this gives the rate at which gw(t) approaches g∞(t) as w → ∞:

gw(t) ≈ g∞(t)
(

1 − C |log(µwt)|2−αw

)
. (33)

Since µw < µ, the singularity in gw(t) is approached when t → 1/µw. Putt-
ing t = 1/µ < 1/µw in Eq. 33, and comparing it to Eq. 11 then indicates that
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g∞(1/µ) ≤ g(1/µ) < ∞, and one may compute the average length of polygons in a
slab of width w at activity tc = 1/µ. This is done exactly as in Eq. 12, in this case by
exploiting the assumption in Eq. 28; the result is

〈n〉w = d

d log t
log gw(t) ≈ Const. + C(2 − αw)| log(tµw)|1−αw

1 − C | log(tµw)|2−αw
. (34)

Putting t = 1/µ gives the average length at the critical point in the slab Lw of width
w:

〈n〉w ≈ Const. + C(2 − αw)| log(µw/µ)|1−αw

1 − C | log(µw/µ)|2−αw
. (35)

Finally, noting the relationship between µ and µw in Eq. 30 gives to leading order

〈n〉w ≈ Const. + C1w
−(1−αw)/ν + · · · . (36)

This relation, derived from a scaling argument, and using the relationship between µ

and µw, gives the dependence of the expected length of a polygon in a slab of width
w when t = 1/µ.

3.1 Knotted polygons in a slab

In the case that a lattice knot in the slab Lw is examined, a similar argument is used.
Define pn(K , w) to be the number of lattice knots of knot type K and length n in the
slab Lw of width w, and counting up to equivalence under translations parallel to the
bottom bounding place of Lw.

The basic assumption that

pn(K , w) = AK ,wnαK ,w−3µn
K ,w

(
1 + BK ,wn−�K ,w + CK ,wn−1 + · · ·

)
(37)

is made in analogy with Eq. 20. This poses another open problem.

Open problem 3.2 Prove that pn(K , w) = µ
n+o(n)
K ,w , were µK ,w = µ∅,w is indepen-

dent of K . This implies that the limit

lim
n→∞

1

n
log pn(K , w) = log µ∅,w

exists and is independent of K .

Additionally, it is expected that the relationship between αK and α∅ in Eq. 21 is
maintained in Lw:

αK ,w = α∅,w + NK . (38)

Demonstrating that this is true is an open problem.
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Open problem 3.3 If K is a fixed knot type, show that the asymptotic formula

pn(K , w) = AK ,wnαK ,w−3µn
∅,w(1 + BK ,wn−�K ,w + CK ,wn−1 + · · · )

can be obtained from a (non-rigorous) field theoretic argument. Show this in particular
for K = ∅. In addition, provide theoretical support for the relation

αK ,w = α∅,w + NK

amongst the entropic exponents of lattice knots of fixed knot type in a slab Lw. In
addition, show that α∅,w = αw.

Assume that the relationship between αK and α∅ in Eq. 21 is maintained in Lw:
αK ,w = α∅,w + NK . With these assumptions, the expected length of knotted polygons
in a slab Lw at t = 1/µ can be estimated in the same way as above. The result is

〈n〉K ,w ≈ Const. + C(2 − αK ,w)| log(µw/µ)|1−αK ,w

1 − C | log(µw/µ)|2−αK ,w
. (39)

Substituting αK ,w = α∅,w + NK in this, and assuming that α∅,w < 1, then gives the
following leading order dependences for 〈n〉K ,w:

〈n〉K ,w =
⎧
⎨

⎩

C1 + O(w−(1−α∅,w)/ν) for unknots,
C2 + O(wα∅,w/ν) for prime knots,
C3 + O(w1/ν) for compound knots.

(40)

Assuming that α∅,w ≈ 1/2 (this is close to its two dimensional value since Lw is
almost two dimensional in the scaling limit), and assuming that ν = 0.588 (this is
close to the numerical value for ν [22]), then gives

〈n〉K ,w =
⎧
⎨

⎩

C1 + O(w−0.85) for unknots,
C2 + O(w0.85) for prime knots,
C3 + O(w1.70) for compound knots.

(41)

This can be numerically tested.

4 The BFACF algorithm and knotted polygons

Let ω1 and ω2 be two knots. These knots are oriented by the addition of a direc-
tion along each. Two knots ω1 and ω2 are equivalent if there is a homeomorphism
F : R

3 → R
3 such that F(ω1) = ω2. The equivalence classes of (oriented) embed-

dings of the circle into Euclidean space are called knot types. In the case of polygons
in ZZ3, a knot type is defined as the class of all polygons (viewed as piecewise linear
embeddings of the circle in R

3) which are equivalent embeddings in R
3.

A projection P of an embedded circle on any geometric plane Q ⊂ R
3 is regular if

(1) there are only a finite number of multiple points in the projection, (2) if all multiple

123



J Math Chem (2009) 45:7–38 21

Fig. 9 The Reidemeister
Moves. Moves of type I involve
a single arc of the knot. Moves
of type II involve two arc of the
knot, and moves of type III
involve three arc of the knot

points are double points where the image of one arc of the knot passes transversely
through the image of another arc of the knot, and (3) no vertex of the knot is mapped
onto a double point. The projection of a lattice polygon onto a plane Q with irrational
direction cosines is always regular.

The knot type of an embedded circle can be determined from a regular projection
if at every double point in the projection the overpassing and underpassing strands are
indicated together with the orientation. In this case the knot can be reconstructed from
its projection. Such a projection is called a knot projection.

Reidemeister’s theorem states that two knots are equivalent if and only if their
regular projections are equivalent under the application of a finite number of Reide-
meister moves [33]—these are local operations on the knot projection illustrated in
Fig. 9. Thus, if two knots have equivalent knot projections, then they are themselves
equivalent. These ideas can be applied to knotted polygons in the cubic lattice.

In what follows, a subwalk in a polygon is any sequence of edges in the polygon
which constitutes a self-avoiding walk. Let Q be the XY -plane in the cubic lattice, and
let ω be a polygon in the cubic lattice. Consider the projection of ω in Q. In general,
there will be edges in ω which are parallel to the Z -direction, and these will project
to points in Q. Ignore these singular points in the projection.

Apart from these points, in general there will be lattice points in the projection
which are at the intersections of projected subwalks in the polygon. These are multiple
points. There will also be some self-avoiding walks in the projected image which are
the projected image of more than one subwalk in the polygon.

Thus, the projection of ω in a lattice plane is in general not regular, even if the
singular projections of edges parallel to the Z -axis are ignored.

With these observation, one may define a regular projection for lattice knots.

Definition 4.1 The projection of a lattice knot ω in the XY -plane is said to be regular
if (1) all multiple points in the projection are double points (the projected images of
exactly two vertices in the polygon), if (2) all double points are the images of the
two vertices in the polygon where one subwalk of the knot passes transversely over
another, if (3) the orientation along the knot is projected onto the lattice projection,
and if (4) the projected images of edges parallel to the Z -axis are not considered to be
multiple points.
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Fig. 10 A regular lattice knot realization of 5+
2 . The projected knot diagram of the knot in the XY -plane

is illustrated on the right. This projection is regular in the lattice, and is a lattice knot projection

Fig. 11 The BFACF moves operates locally on edges in a polygon; at most five edges is involved in any
move. The implementation proceeds by the selection of an edge in the polygon, and then translating it one
lattice step in a random direction normal to itself, while deleting or adding edges to preserve the connectivity
of the polygon. The results are two different types of moves illustrated above, the first is a length preserving
move (I), and the second is a move which may decrease the length of the polygon (II, left to right), or
increase the length of the polygon (II, right to left)

Regular projections of lattice knots are lattice knot projections. In a w-slab Lw, the
projections of lattice knots are in the bottom bounding plane B(Lw) of Lw. In Fig. 10
a lattice knot embedding of the knot 5+

2 , and its lattice knot projection, are illustrated.

4.1 The BFACF algorithm and lattice knots

The BFACF algorithm [1–3] is a Markov Chain Monte Carlo program which samples
lattice polygons from a distribution. It was originally used to sample self-avoiding
walks with fixed endpoints in the lattice, but has similarly been used to sample lattice
polygons. In its standard implementation the algorithm has one parameter t conjugate
to the number of edges in the walk or polygon.

The detailed operation of the algorithm on a lattice polygon is based on the two
elementary moves displayed in Fig. 11. These may be implemented by choosing an
edge uniformly in the walk or polygon, and then translating it normally in one of
2(d − 1) directions, inserting or deleting edges to keep the polygon connected.

If the polygon becomes longer by two edges in the application of the elementary
move, then a Metropolis style implementation [27] would require that it be accepted as
the new state in the Markov Chain with probability t2. If the polygon does not change
its length or becomes shorter in the application of the elementary move, then it will
be accepted as the new state in the Markov Chain with probability 1.
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The above may be modified by choosing the elementary transition probability from
a current state ω to an proposed adjacent state ω′ to be given by

P(ω → ω′) =
{

1, if |ω′| ≤ |ω|;( |ω′|q−1

|ω|q−1

)
t2, if |ω′| = |ω| + 2,

(42)

where q is a parameter (see Ref. [31] for details). One may check that the term(|ω′|q−1/|ω|q−1
)

t2 is always less than 1 for t ≤ 1/µ and q ≤ 3 (say).
Since the a priori probability to pick a given edge in a polygon ω is 1/|ω|, the

elementary transition matrix satisfies a detailed balance condition given by

|ω|q t |ω| p(ω → ω′) = |ω′|q t |ω′| p(ω′ → ω). (43)

Within its ergodicity classes K , the algorithm has stationary distribution

�K (ω) = |ω|q t |ω|χK (ω)

	
(44)

at activity t , where ω is a polygon. The function χK is an indicator function which is
1 if ω ∈ K and zero otherwise, and 	 is a normalising constant given by

	 =
∑

ω∈K

|ω|q t |ω|. (45)

Normally, one would put q = 0, but larger values of q will bias the sampling to longer
polygons.

In two dimensions it is known that the algorithm is irreducible when applied to both
square lattice polygons, and to square lattice walks with fixed endpoints [Madras, 1986
“Unpublished”, 26]. Thus, the algorithm is both irreducible and satisfies a condition of
detailed balance in two dimensions. In this case the algorithm samples from a unique
stationary distribution given by

�(w) = |ω|q t |ω|

	
, (46)

where |ω| is the length of the polygon ω, and 	 is a normalising factor.
The ergodicity properties have also been resolved in three dimensions [11, 17]. In

particular, the algorithm is not irreducible for lattice polygons in the cubic lattice. If
the algorithm is used to sample polygons along a Markov Chain in three dimensions
then it does not have a unique stationary distribution; instead the chain samples from
a stationary distribution that depends on the initial state of the Markov Chain. This
fixes the ergodicity class of the algorithm for every simulation. The ergodicity classes
are described by the following theorem:

Theorem 4.2 The ergodicity classes of the BFACF algorithm, when applied to
unrooted lattice polygons in the cubic lattice, are the knot types of the polygons.
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Fig. 12 A realization of the
right handed trefoil knot 3+

1
in L1

Fig. 13 Performing Reidemeister II in L1

In other words, the ergodicity classes coincide with the knot-types of lattice poly-
gons. For the proof of this theorem, see Ref. [17], and in particular Theorem 3.11
therein.

In a slab Lw the ergodicity classes of lattice polygons have similarly been resolved.
In the event that w = 1, the algorithm does not have ergodicity classes that coincide
with knot types of lattice knots in L1 (see Fig. 12). Instead, the following theorem was
proven in Ref. [13]:

Theorem 4.3 Suppose that ω is a polygon in L1. Then ω has a regular lattice knot
projection in the XY -plane. Moreover, by applying a finite number of BFACF moves
in L1 on ω, Reidemeister moves of type I or of type II can be performed on the lattice
knot projection of ω.

An example of a Reidemeister II move on two arcs in a polygon is given in Fig. 13.
To perform Reidemeister III moves on a polygon in Lw, one must have w > 1.

Theorem 4.4 Suppose that ω is a polygon in L1. Then ω has a regular lattice knot
projection in the XY -plane. Moreover, by applying a finite number of BFACF moves in
L2 on ω, Reidemeister moves of type III can be performed on the lattice knot projection
of ω.

The theorems above states that Reidemeister moves can be performed on lattice
polygons in three dimensions in Lw, provided that w > 1. These results give the fol-
lowing theorem, the methods of proof are directly from proposition 3.9 and proposition
3.10 in Ref. [17]. The result is the following theorem:

Theorem 4.5 The ergodicity classes of the BFACF algorithm in the set of all unrooted
lattice polygons in L2 are the knot types of the polygons.

This theorem generalizes to other slabs, with w > 2: see Ref. [13].

Theorem 4.6 Suppose that w ≥ 2. Then the ergodicity classes of the BFACF algo-
rithm in the set of all unrooted lattice polygons in Lw are the knot types of the polygons.
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There are several open problems which remain unresolved. For example, the ergo-
dicity properties of the BFACF algorithm in L1 in three dimensions are not understood,
and this is posed as an open problem.

Open problem 4.7 Characterize the ergodicity classes of the BFACF algorithm when
it is implemented to three dimensional lattice polygons in the slab L1.

In addition, there are no algorithms available for simulating lattice polygons in
other confining geometries, such as pores or even in wedges.

Open problem 4.8 Prove that the BFACF algorithm is ergodic in a cube of dimension
w defined by

Cw = {x ∈ ZZd | 0 ≤ X (x) ≤ w, 0 ≤ Y (x) ≤ w, 0 ≤ Z(x) ≤ w}.

Alternatively, demonstrate that knotted polygons can effectively be sampled in Cw by
a Monte Carlo algorithm.

Open problem 4.9 Prove that the BFACF algorithm is ergodic in a wedge W with
vertex angle s defined by

Ws = {x ∈ ZZd | 0 ≤ Z(x) ≤ (tan s)X (x)}

where the polygon is rooted at the origin (0, 0, 0), or confined to a finite subset of the
wedge.

The simulation of polygons of fixed length and fixed knot type is a major open
problem.

Open problem 4.10 Construct a Monte Carlo algorithm for the sampling lattice of
fixed length in the cubic lattice, or confined in a slab in the cubic lattice.

4.2 Data analysis

Suppose that the numerical values of an observable A(ω) are sampled along a time
series L generated by sampling along a Markov Chain M = {wi } using the BFACF
algorithm in the state space of the algorithm. Then the sample average of the observable
along the chain is

〈〈A〉〉N = 1

N

N∑

i=1

A(ωi ) (47)

if the chain has length N . Since the chain is ergodic in its ergodicity class K (which
coincides with the knot type of the first state ω1 of the polygons) by theorem 4.6, the
sample average of the chain converges to

lim
N→∞ 〈〈A〉〉N = 1

	

∑

ω∈K

A(ω) |ω|q t |ω| (48)
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by the fundamental theorem of Markov Chains where 	 is a normalising factor, and
where it is assumed that the Markov Chain is generated by setting the activity param-
eter of edges equal to t .

The mean value of A measured over a boltzmann distribution is given by

〈A〉 =
∑

ω∈K

A(ω) t |ω|/
∑

ω∈K

t |ω| (49)

and comparison with Eq. 48 shows that the ratio-estimator

〈A〉 = limN→∞ 〈〈A/|ω|q〉〉N

limN→∞ 〈〈1/|ω|q〉〉N
≈ 〈〈A/|ω|q〉〉N

〈〈1/|ω|q〉〉N
(50)

approximates 〈A〉 for large values of N .

5 Numerical simulations

The expected length of a polygon in the ensemble defined by Eq. 2, assuming that
pn ≈ A nα−3µn , is given by Eq. 12. Since α ≈ 0.26, this result clearly shows that
〈n〉 → Const. as t → tc = 1/µ.

In contrast to this, implementing the BFACF algorithm with the parameter q as
defined in the last section gives the stationary distribution 44. For large enough values
of q, 〈〈n〉〉 will be divergent as t → 1/µ. In fact, if pn(K ) is given by Eq. 20, with the
explicit correction terms

pn(K ) = AK nαK −3µn
K

(
1 + BK n−�K + CK n−1 + · · ·

)
, (51)

then it is possible to compute the expected length of polygons in a simulation using the
BFACF algorithm, at given fixed values of the parameters t and q. This was done in
Ref. [31]. The invariant stationary distribution is given by Eq. 44, and if one assumes
that q is large enough to make the mean length of polygons divergent at the critical
point t = 1/µ (it is sufficient to take q = 3, for example). Then by taking the deriva-
tive of log 	 to log t while taking into account the subdominant corrections to pn , the
mean length of polygons sampled by the algorithm should be given by

〈〈n〉〉K � t
−µ(2 − α − q)z−1 − µ(2 − α − q)bz� − µ(2 − α − q)c − µb�z�−1 − µc

1 + bz� + cz

= tµ(α + q − 2)

z

{
1 + b

α + q − 2 − �

α + q − 2
z� + c

α + q − 3

α + q − 2
z

}
{1 − bz� − cz}

= tµ(α + q − 2)

z

{
1 − �b

α + q − 2
z� + c

α + q − 3

α + q − 2
z − bc

2α + 2q − 5 − �

α + q − 2
z�+1

}

(52)
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where z = n ln(µt)−1 and where b and c are only dependent on q. Keeping only the
leading terms, and fixing the knot type at K , then shows that

〈〈n〉〉K ≈ [αK + q − 2]µK t

1 − tµK

(
1 − BK �K [1 − tµK ]�K

αK + q − 2

)
. (53)

Taking ratios for two different knot types show (assuming that � is independent of
knot type)

〈〈n〉〉K

〈〈n〉〉L
≈ αK + q − 2

αL + q − 2

[
1 + c(1 − tµ(∅))�

]
. (54)

In simulations with q = 3, define

ρ(K , L) = αK + 1

αL + 1
. (55)

Computing ρ(K , L) is a numerical verification of the relation αK = α∅ + NK in
Eq. 21.

5.1 The growth constant

Plots of 〈n〉−1
K as a function of 1/t have been made for data obtained with q = 3 for

some simple knots in Ref. [31]. For t close to its critical value (1/µK ), linear behaviour
of the data can be extrapolated to estimate the growth constant µK . This procedure
gave the following estimates

µ∅ = 4.6852,

µ31 = 4.6832,

µ41 = 4.6833,

µ62 = 4.6844,

µ31#31 = 4.6800,

µ31#41 = 4.6841. (56)

These values coincide to the second decimal place, and it seems reasonable to take
this as evidence that they are all equal: µ∅ = µK for any knot type K . This result is
consistent with Open problem 2.3. Since these results were independently obtained,
their average can be taken to estimate the growth constant for polygons of fixed knot
type:

µ∅ = µK = 4.6836 ± 0.0038, (95%confidence interval) for any knot typeK . (57)

Current computer technology should be powerful enough to determine more digits in
µ∅, and to compare them with Eq. 7 to verify the estimate in Eq. 17. This is an open
problem.
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Open problem 5.1 Compute µ∅ and µ31 to higher accuracy in order to demonstrate
numerically that

log µ31 − log µ01 = 0.

5.2 The entropic exponent

Estimates of ρ(K , L) were also made in Ref. [31] (see also Ref. [29]). If αK = αL ,
then ρ(K , L) = 1. Otherwise, assuming that α∅ = 0.237±0.004 (which is the numer-
ical value for polygons [22]), one should obtain ρ(K ,∅) ≈ 1.80 if K is prime, and
ρ(K , P) ≈ 1.44 if K is compound with two components and P is a prime knot.

In Ref. [31] the following measurements were made:

ρ(31,∅) = 1.69 ± 0.11,

ρ(41,∅) = 1.67 ± 0.11,

ρ(62,∅) = 1.75 ± 0.05. (58)

and moreover,

ρ(31, 41) = 1.01 ± 0.11,

ρ(31#31, 31#41) = 0.928 ± 0.070. (59)

In the case of 31 and 41,

ρ(31#31, 31) = 1.25 ± 0.16,

ρ(31#31, 41) = 1.38 ± 0.06,

ρ(31#41, 31) = 1.27 ± 0.02,

ρ(31#41, 41) = 1.39 ± 0.10. (60)

These results strongly support the notion that αK = α∅ + NK . This relation can be
understood by arguing as in Sect. 5.2.1 using the metric scaling of a polygon of knot
type K .

Open problem 5.2 improve the accuracy of the results above to demonstrate numer-
ically to better accuracy that αK = α∅ + NK .

5.2.1 The metric exponent

The mean square radius of gyration of a polygon of knot type K must grow as a
powerlaw of n

〈R2〉K ≈ MK n2νK (61)
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Fig. 14 A schematic diagram of
a knotted arc in a ball in
polygon. The ball separates the
knotted polygon into two arcs,
one which is knotted if it is
closed by an arc on the ball

where νK is the metric exponent, and MK is an amplitude, and where 1/3 ≤ νK ≤ 1.
Numerical simulations strongly suggest that both νK and MK are independent of K
[18].

Open problem 5.3 Show numerically or otherwise that νK = ν∅ = ν, where ν is the
metric exponent of the self-avoiding walk in three dimensions. In addition, demon-
strate that the amplitude MK in Eq. 61 is independent of K to higher accuracy than
was done in Ref. [18].

Figure 14 is a schematic diagram of a polygon ω which is a prime knot. Let S be a
geometric sphere which intersects ω in exactly two points. Then S divides ω into two
arcs, each of which can be closed by a shortest curve on the sphere into an embedded
circle. One of these arcs, closed by a curve on S, is a knot. Let its length be mK ,
assuming that ω has n edges.

Define MK to be the infimum of mK over all possible intersections of geometric
spheres which cut ω in exactly two points. Define nK to be the expected value of MK

taken uniformly over all polygons of knot type K .
There are two possibilities: First of all, one may have nK ∝ n (assume that nK /n →

γ for some constant γ ), or alternatively, nK = o(n).
If nK ∝ n, then the mean length of the arc of ω inside S grows, on average, pro-

portionally to n, and the radius of S grows at least as fast as O(n1/3), and at most as
O(nν). If 〈R2

n〉1/2
K grows faster than the radius of S, then ω will start to assume the

character of an unknotted polygon of length (1 −γ )n, and observe then that ν∅ = νK ,
while MK = (1 − γ )M∅ < M∅.

If 〈R2
n〉1/2

K grows at the same rate as the radius of S (this may be the case if γ = 1)
then it is not possible to derive a relationship between the critical exponents or ampli-
tudes.

On the other hand, if one consider the case that nK = o(n), then νK = ν∅ by the
same arguments as in the case above. In addition, the scaling of the mean square radius
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of gyration now has the general form

〈R2
n〉K ≈ MK (n − nK )2ν∅ ≈ M∅n2ν∅(1 + λnK /n + · · · ), (62)

for some constants MK and λ. Thus, if nK = o(n), then the knot has no effect on the
amplitude (MK is independent of the knot type) and the effect of the knot only appears
as corrections to the scaling. For example, if nK ∼ √

n, then a correction term of the
form λ/

√
n will appear, and so on. Numerical evidence indicates that MK is indepen-

dent of K [17]. Overall, this argument strongly support the notion that ν∅ = νK for
arbitrary knot types K .

These arguments also have implications for the entropic exponent: Indeed, if nK =
o(n), then in the large n limit, the knotted polygon looks like an unknotted polygon
with a small sphere attached to it, and where its knot type is determined. Since we can
place this sphere and its contents at O(n) places along the polygon, we conclude that
pn(K ) ∼ n pn(∅). Substitution of Eq. (20) gives αK = α∅ + 1, if K is a prime knot.
This argument generalises to cases where K is a knot with NK prime components,
and suggests that αK = α∅ + NK .

5.3 The mean length of knotted polygons in slabs

The mean length of a knotted polygon in a w-slab should increase with w as in Eqs.
40 or 41 at activity t = µ−1

∅ , where µ−1
∅ is the growth constant of unknotted polygons

in the cubic lattice.
In the case of unknotted polygons one may approximate α∅ = α = 1/2 and

α/ν = 0.85 in Eq. 40 to obtain

〈n〉w = C1 + C2 w−0.85 + · · · (63)

Thus, the mean length of unknotted polygons should approach a constant as w → ∞.
Moreover, the approach should be at a rate proportional to w−0.85. Since unknot-
ted polygons are believed to have the same scaling exponents as all polygons, this
behaviour should also be true for all polygons in a w-slab.

In Fig. 15 the increase in the mean length of unknotted polygons with w is plotted
for values of w ∈ [1, 22]. A best fit is indicated by the solid line. The χ2-statistics
of this regression was acceptable at the 95% level on the points spanned by the solid
curve. The regression estimates that C1 = 7.248 ± 0.007 in Eq. 63.

In the case of knotted polygons of prime knot type one may approximate αK =
α∅ + 1 with the result that the mean length diverges with w. From Eq. 40 one obtains

〈n〉w = C1 + C2 w0.85 + · · · (64)

The mean length of polygons with knot type 31 (trefoil) is plotted in Fig. 16 at t = µ−1
∅ .

In contrast with unknotted polygons, the mean length of trefoils increases quickly with
w. Although the graph may appear linear for w > 4, a least squares regression using
the model 〈n〉w = C1 + C2 w0.85 + C3/w was used (see Eq. 64). The solid lines span
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Fig. 15 The mean length 〈n〉01 of unknotted polygons in a slab of width w at t = 1/µ∅. This data have

been fitted with the model C1 + C2 w−0.85 + C3/w (compare this to Eq. 41). Extrapolating suggests that
the curve is asymptotic to the constant 7.248 ± 0.007

Fig. 16 The mean length 〈n〉31 of polygons knotted into trefoils in a slab of width w at t = 1/µ∅. This

data have been fitted with the model C1 +C2 w0.85 +C3/w (compare this to Eq. 41). Notice the difference
in scale on the vertical axis when compared to Fig. 15

the data points on which a regression acceptable at the 95% level was obtained. These
data are consistent with the model, but measurements at larger values of w will be
needed to rule out a linear relationship between 〈n〉w and w for trefoils.

Open problem 5.4 Show numerically that the data in Fig.16 lie along a concave
curve.

Mean lengths were also computed for other prime knots, and the results are plotted
in Fig. 17, displaying data for prime knots up to six crossings in the standard knot
tables. In each case the data were fitted assuming the model in Eq. 64; a least squares
regression using the model 〈n〉w = C1 + C2 w0.85 + C3/w was used. The solid lines
span the data points on which a regression acceptable at the 95% level was obtained.
For the knots in this example, the data fall into clear groups defined by minimal
crossover number. This is unlikely to persist for more complicated knots.

Compound knots of the form 3+
1 #3+

1 and 3+
1 #3+

1 #3+
1 (where each copy of 31 is

right-handed) where also studied. These data, together with data for 31, are plotted in
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Fig. 17 The mean length 〈n〉K of polygons knotted into prime knots in a slab of width w at t = 1/µ∅.
This data have been fitted with the model C1 + C2 w0.85 + C3/w (compare this to Eq. 41). Notice the
difference in scale on the vertical axis when compared to figure 15

Fig. 18 The mean length 〈n〉K of polygons knotted into compound knots and for the trefoil knot in a slab
of width w at t = 1/µ∅. This data have been fitted with the model C1 + C2 w1.85 + C3/w (compare this
to Eq. 41). Notice the difference in scale on the vertical axis when compared to Figs. 15 and 17

Fig. 18. In the case of compound knots, the data is modeled by

〈n〉w = C1 + C2 w1.85 + · · · (65)

as suggested in Eq. 40. Thus, a least squares regression using the model 〈n〉w =
C1 + C2 w1.85 + C3/w was used to fit the data. The solid lines span the data points
on which a regression acceptable at the 95% level was obtained. The data for 31 are
reproduced from Fig. 17.

The predicted behaviour from Eq. 64 is that the mean length will increase along
a concave curve with increasing w for prime knots other than the unknot, while the
mean length will increase along a convex curve with increasing w for compound knots.
This is supported by the data in Fig. 18; there is a clear convexity in the data for the
compound knots. However, for the prime knots in Figs. 17 and 18, larger values of w
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may be needed to confirm that the data lie along a concave curves—these calculations
are computationally expensive.

5.4 Metric properties of knotted polygons in a slab

In this section the metric properties of knotted polygons in a slab are discussed. In
particular, data were collected using the BFACF algorithm in a slab geometry, and
analysed in Ref. [13]. Those data have been used to generate Figs. 19, 20 and 21.

In Fig. 19 the mean square radius of gyration of knotted polygons in a w-slab are
plotted against w for the unknot, the trefoil and for composite trefoil knot types.
Unknotted polygons stay on average small with increasing w. In fact, unknotted poly-

Fig. 19 The mean square radius of gyration of lattice polygons with knot type compounded trefoils.
Increasing w increases the mean length of the polygons, and they grow in relative size. The more complex
knots is swollen in the XY -plane, and so has larger mean square radius of gyration

Fig. 20 Amplitude ratios of polygons with knot type compounded trefiols. The data show a constant regime
for 3 ≤ w ≤ 10, before the interactions between the polygon and the slab lessens, and the relative expansion
of the polygon becomes less in the XY -plane
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Fig. 21 Amplitude ratios of polygons with prime knot type. The data show a constant regime for 3 ≤
w ≤ 10, before the interactions between the polygon and the slab lessens, and the relative expansion of the
polygon becomes less in the XY -plane

gons have mean square radius of gyration much smaller than w for even small values
of w, an they do not interact significantly with the bounding planes of the slab.

This situation changes for non-trivial knot types. In the case of trefoils (denoted
by • in Fig. 19), there is a commensurate increase of 〈r2〉K ,w with w. Our data gen-
erally only include values of w up to w = 20; extrapolation of the data suggest that
this increase is unbounded with w: Increasing w to infinity would also take the mean
square radius of gyration of the knotted polygon to infinity. Thus, polygons of non-
trivial knot type interact with the bounding planes of the slab, even in the large w

limit.
In Fig. 19 data corresponding to the compound knot types 3+

1 #3+
1 and 3+

1 #3+
1 #3+

1
are denoted by � and  respectively. The increase in 〈r2〉K ,w is even faster for these
knot types than for polygons with knot type a trefoil. The faster expansion of the
mean square radius of gyration for composite knots is explained by noting that these
polygons expand faster in the XY -direction than a polygon with knot type a trefoil.

One may compute a dimensionless amplitude ratio by taking the ratio of the square
of the mean span of a knotted polygon in the XY -plane by the mean square radius of
gyration of the polygon: Let 〈Sxy〉K ,w be the mean span of the knotted polygon in the
XY -plane and define the amplitude ratio AK ,w by

AK ,w = 〈Sxy〉2
K ,w

〈r2〉K ,w

. (66)

AK ,w is generally a function of the activity t , and in Fig. 20 it is plotted at t = µ−1
∅

for the unknot and for trefoils and compound trefoils.
The amplitude ratios in Fig. 20 are virtually independent of w for unknotted poly-

gons. This shows that unknotted polygons can be accommodated in a w-slab without
the polygon spreading out in the XY -direction to compensate for the steric repulsions
between subwalks of the polygon induced by the w-slab.
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For knotted polygons however, closer inspection shows that AK ,w goes through a
constant regime for w roughly in the range 4 ≤ w ≤ 10, before it starts to decline
slowly in value for larger values of w. The constant regime appears to be the result
of steric interactions between subwalks in the knot induced by the slab. The smallest
geometric sphere intersecting the polygon in two points, and which contains an arc in
the polygon which closes to a knot along the surface of the sphere will be comparable
in size to the polygon itself for small values of w, and this sphere should grow in size
proportional to the span in the XY -plane. For larger values of w the size of the knotted
ball-pair reduces relative to the size of the polygon, and eventually it stops interacting
with the bounding planes; hence the decline that sets in the amplitude ratios in Fig. 14
for larger values of w.

The data in Fig. 20 may be interpreted as follows: At smaller values of w the knot
spreads out in the XY -direction proportional to its mean square radius of gyration,
giving rise to the observed constant regime. This constant plato in AK ,w is a measure
of the amount of spreading of the knot in the XY -direction due to its complexity. The
more “complex” a knot, the more it should spread out in the XY -direction for narrow
w-slabs, and the larger AK ,w should be in its constant regime. The average value of
AK ,w in this constant regime is a measure of complexity of the knot.

For larger values of w the knotted ball-pair can be accommodated in the slab, and
the expansion of the polygon in the XY -plane is less.

Observe also that in Fig. 20 AK ,w increases with K going from the unknot to a knot
which is the connected sum of three right handed trefoils.

In Table 1 the average of the amplitude ratios

〈AK ,w〉 = 1

7

10∑

w=4

AK ,w (67)

for values of w from 4 to 10 are listed. This range of w is over the constant regime in
Figs. 20 and 21. These estimates of the mean amplitude ratio give a measurement of
the deformation of the knot in slabs where steric interactions in the polygon as a result

Table 1 The Average of AK ,w

for 4 ≤ w ≤ 10
Knot AK ,4 AK ,10 〈AK ,w〉 Eqn. 67

01 4.952(21) 4.834(19) 4.90
31 18.499(69) 18.343(138) 18.38
41 20.599(85) 20.438(141) 20.51
51 21.781(71) 21.519(155) 21.61
52 22.156(106) 21.872(161) 21.97
61 23.342(119) 23.003(171) 23.15
62 23.446(122) 23.209(176) 23.30
63 23.589(128) 23.352(164) 23.45

3+
1 #3+

1 22.588(156) 23.377(230) 22.50

3+
1 #3−

1 22.565(149) 22.368(232) 22.50

3+
1 #3+

1 #3+
1 24.645(429) 24.619(223) 24.68
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of the knot type expands the knot in the XY -plane. The second and third columns in
Table 1 lists the values of AK ,w for w = 4 and w = 10 respectively. These values are
largely unchanged for this range of w.

Similar observations are true when only prime knot types are considered. AK ,w are
plotted against w in Fig. 21 for K ranging over knots from 31 to 63 in the standard
knot tables. The vertical scale in Fig. 21 has been stretched to enhance changes in
the vertical direction, and the constant regimes in AK ,w are quite visible in this plot,
ranging for w between 4 and roughly 10 for each knot type.

The metric properties of the knotted polygons were examined in Figs. 19, 20 and
21. In Fig. 19 it was found that the mean square radius of gyration increases with w for
non-trivial knots. This is not unexpected, since the length of polygons with non-trivial
knot types increases with w. The amplitude ratios do however tell a more interesting
story.

The amplitude ratios defined in Eq. 66 may be interpreted as a measure of the
deformation of the polygon by the slab. A larger value of AK ,w implies that the poly-
gon is expanded in the XY -directions parallel to the slab, while a smaller amplitude
ratio is consistent with a polygon that on average is not deformed significantly by the
confining geometry of the slab.

If AK ,w decreases with w, then the entanglements in the knot are increasingly
accommodated by the w-slab, and the deformation of the polygon by the slab is less-
ened.

In narrow slabs the entanglements in the polygon are compensated for by a relative
expansion of the knot in the XY -direction. This shows that more complex knots with
more steric repulsions due to entanglements should have an increased amplitude ratio,
as observed numerically in Figs. 20 and 21.

The constant regimes in Figs. 20 and 21 are regimes where the square of the XY -
span and the mean square radius of gyration increase at a similar rate with w. This
increase is probably proportional to w. This implies that the deformation of the knot by
the slab does not change with increasing w, because the polygon must accommodate
entanglements in the knot by expanding in the XY -direction.

As the entanglements in the knot are relaxed by an increasing w, the knot grows in
all directions at a similar rate until the polygon reaches a length where it can accom-
modate the knot without losing significant entropy or by interacting with the slab. At
this point the entanglements due to the knot type become less a factor in its overall
mean shape, and the polygon need not expand in the XY -direction to compensate.
This implies a smaller XY -span relative to the mean square radius of gyration. This
implies that AK ,w should decrease with w, and this is observed in Figs. 20 and 21.

6 Conclusions

In this paper an review of the status of lattice knot statistics is given. This review is by
no means comprehensive, and focussed in particular on the statistics of lattice knots
in slabs. Open problems in the study of lattice knots were proposed, some of which
would be key results if they are resolved. Perhaps the most important open questions
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are stated in Open problems 2.2 and 2.3, and 2.4. Proving (or disproving!) these results
will put on firmer basis much of what is assumed in the rest of this review.

The study of knotted polygons in confined geometries here focus on the one exam-
ple of a knotted polygon in the cubic lattice confined to a slab. Monte Carlo simulations
of this situation are possible because the BFACF algorithm can be shown to be ergodic
in slabs in the cubic lattice; this is by no means inevitable, and proving it for other
situations remains beyond the scope of current techniques.

The response of knotted polygons confined to a slab were studied in this paper.
Scaling arguments were used to predict the mean length of a polygon of fixed knot
type and with edges weighted by the activity t . When t = tc = µ−1, the mean length
is given by Eq. 12 and this relation should also apply for knotted polygons, but with
µ replaced by µ∅.

In Sect. 3 it was proven that the BFACF algorithm can be used to similate knot-
ted polygons of fixed knot types in a w-slab. The algorithm is ergodic in the w-slab
if w ≥ 2, but the properties of the algorithm are not yet understood in the 1-slab.
The 0-slab is the square lattice, and here it is known that the algorithm is ergodic for
unknotted polygons (Madras, 1986 “Unpublished”). Data were collected on realiza-
tions of Markov Chains for polygons of fixed knot type in w-slabs for 2 ≤ w ≤ 20,
with w = 21 also included for the trefoil knot, and w = 21 and w = 22 also included
for the unknot.

In Sect. 5 the mean length of knotted polygons and the metric properties of the
knotted polygons were examined. In Figs. 15, 16, 17 and 18 the mean length 〈n〉K ,w

are plotted against w. The results in these graphs are consistent with the predicted
scaling behaviour in Eq. 39. A particularly interesting point is that the dependence of
〈n〉K ,w on w is a concave curve for the unknot and prime knots while it is predicted
to be convex for composite knots, and this is also observed in Fig. 11. In addition, the
mean length of unknotted polygons 〈n〉01,w approaches a constant as w increases; this
is predicted in Eq. 41 and observed in Fig. 9. For all non-trivial knots, 〈n〉K ,w increases
without bound as w increases.
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